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Objective: Reducing unsuccessful treatment trials could
improve depression treatment. Quantitative EEG (QEEG)
may predict treatment response and is being commercially
marketed for this purpose. The authors sought to quantify
the reliability of QEEG for response prediction in depressive
illness and to identify methodological limitations of the
available evidence.

Method: The authors conducted a meta-analysis of di-
agnostic accuracy for QEEG in depressive illness, based on
articles published between January 2000 and November
2017. The review included all articles that used QEEG to
predict response during a major depressive episode, re-
gardless of patient population, treatment, or QEEG marker.
The primary meta-analytic outcome was the accuracy for
predicting response to depression treatment, expressed as
sensitivity, specificity, and the logarithm of the diagnostic
odds ratio. Raters also judged each article on indicators of
good research practice.

Results: In 76 articles reporting 81 biomarkers, the meta-
analytic estimates showed a sensitivity of 0.72 (95% CI=
0.67–0.76) and a specificity of 0.68 (95%CI=0.63–0.73). The
logarithm of the diagnostic odds ratio was 1.89 (95% CI=
1.56–2.21), and the area under the receiver operator curve
was 0.76 (95% CI=0.71–0.80). No specific QEEG biomarker
or specific treatment showed greater predictive power than
the all-studies estimate in a meta-regression. Funnel plot
analysis suggested substantial publication bias. Most studies
did not use ideal practices.

Conclusions: QEEG does not appear to be clinically reliable
for predicting depression treatment response, as the literature
is limitedbyunderreportingofnegativeresults,a lackofout-of-
sample validation, and insufficient direct replication of previ-
ous findings. Until these limitations are remedied, QEEG is not
recommended for guiding selection of psychiatric treatment.
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Major depressive illness remains a leading worldwide con-
tributor to disability despite the growing availability of medi-
cations and psychotherapies (1). The persistent morbidity is
partly due to the difficulty of treatment selection. An adequate
“dose” of cognitive-behavioral therapy for depression is 10–
12 weeks (2). An antidepressant or augmentation medication
trial requires at least 4weeksat anadequatedosage (2).Patients
may spend months to years searching through options before
responding to treatment (3). Knowing sooner whether a
treatment will be effective could increase the speed and pos-
sibly the rate of overall treatment response. The high potential
value of treatment prediction biomarkers has spurred extensive
research. Unfortunately, it has also encouraged commercial
ventures that market predictive tests to both patients and
physicians, often without the support of evidence of clinical
efficacy (4). Inappropriate use of invalid “predictive” tests could
easily increase health care costs without benefiting patients (5).

Predictive biomarker research emphasizes pretreatment
and “treatment-emergent”biomarkers. Treatment-emergent
markers are physiologic changes that precede and predict
the response to effective treatment. They may represent phys-
iologic processes mediating the clinical response, whereas
pretreatment markers may represent moderating factors. If
we could confidently predict a treatment’s efficacy or non-
efficacy 1–2 weeks into a treatment trial, we could move much
more quickly through clinical decision trees. For novel
therapies such as brain stimulation, treatment-emergent
markers could also guide “closed-loop” treatment, where
an aspect of the stimulation is titrated in direct response to
the physiologic marker (6, 7).

Electroencephalography (EEG) is a promising source of
psychiatric biomarkers. Unlike serum chemistry or genetic
variation, EEG directly measures brain activity. EEG is po-
tentially more cost-effective than neuroimaging techniques,

See related feature: Video by Dr. Pine (online)

44 ajp.psychiatryonline.org Am J Psychiatry 176:1, January 2019

ARTICLES

http://ajp.psychiatryonline.org


such as functional MRI (fMRI) and nuclear medicine computed
tomography (PET/SPECT), which have also been proposed
as biomarkers (8–10). EEG recordings can be more feasibly
implemented in a wide variety of clinical settings, and it has
essentially no safety concerns, whereas PET involves radiation
andMRI cannot be used in the presence ofmetal foreign bodies.

Psychiatric biomarker studies have emphasized quan-
titative EEG, or QEEG (see the text box). Baseline and
treatment-emergent biomarkers, as qualitatively reviewed
in recent years (11–13), include simple measures such as loud-
ness dependence of auditory evoked potentials (LDAEP)
(14–22), oscillatory power in the theta and alpha ranges (see
the text box) (14, 23–39), and the distribution of those low-
frequency oscillations over the scalp (35, 37, 40–45). With
the increasing power of modern computers, biomarkers in-
volving multiple mathematical transformations of the EEG
signal became available. These include a metric called
cordance (23, 26, 46–57) and a proprietary formulation
termed the Antidepressant Treatment Response (ATR) in-
dex (57–61). Each is based on both serendipitous observa-
tions andphysiologic hypotheses of depressive illness (11, 12).
LDAEP is believed to measure serotonergic function, oscil-
lations are linked to top-down executive functions (62, 63), and
cordance may reflect cerebral perfusion changes related to
fMRI signals. ATR and related multivariate markers (64–66)
merge these lines of thought to increase predictive power.
Recent studies (including the Canadian Biomarker Integration
Network in Depression [CAN-BIND], the International Study
to Predict Optimized Treatment–Depression [iSPOT-D], and
the Establishing Moderators and Biosignatures of Antide-
pressant Response for Clinical Care study [EMBARC]) have
sought to create large multicenter data sets that may allow
more robust biomarker identification (40, 67–72).

Despite the rich literature, thevalueofQEEGasa treatment
response predictor in depressive illness remains unclear. This

is in part because there has been no recentmeta-analysis aimed
at the general psychiatrist or primary care practitioner. The last
formal American Psychiatric Association position statement
on EEG was issued in 1991 (73), at which time personal
computers had a fraction of the computing power of today’s
computers. A 1997 American Academy of Neurology report
(74) focused on QEEG in epilepsy and traumatic brain injury.
The most recent report, from the American Neuropsychi-
atric Association, was similarly cognition oriented (75). All
of these reports are over a decade old. More recent re-
views have delved into the neurobiology of QEEG but
have not quantitatively assessed its predictive power (11–13).
The closest was a 2011 meta-analysis that combined imaging
and EEG to assess the role of the rostral cingulate cortex in
major depression (76).

To fill this gap in clinical guidance, we performed a meta-
analysis of QEEG as a predictor of treatment response in
depression. We cast a broad net, considering all articles on
adults with any type of major depressive episode, receiv-
ing any intervention, and with any study design or outcome
scale. This approach broadly evaluated QEEG’s utility with-
out being constrained to specific theories of depression
or specific markers. We complemented that coarse-grained
approach with a meta-regression investigating specific bio-
markers to ensure that inconsistent results across the entire
QEEG field would not mask a single effective marker.

METHOD

Our review focused on two primary questions: What is the
overall evidence base for QEEG techniques in predicting
response or nonresponse in the treatment of depressive
episodes? Given recent concerns about reliability in neuro-
imaging (10, 77), how well did published studies implement
practices that support reproducibility and reliability?

Basics of EEG Terminology and Biomarkers
• Montage: placement of individual sensors (elec-
trodes) on a patient’s scalp. The most common is the
international 10-20 system, but many alternatives
exist, particularly as the number of sensors increases
above 64.

• Quantitative EEG (QEEG): analysis of EEG through
standardized and reproducible mathematical algo-
rithms, as opposed to the visual inspection more com-
mon in neurologic diagnosis.

• Alpha, theta, beta, gamma: patterns of rhythmic (sine-
wave-like) electrical activity believed to be important
for cognition and brain network coordination. Each
occurs at a specific frequency (cycles per second, orHz):
5–8 Hz for theta, 8–15 Hz for alpha, 15–30 Hz for beta,
and above 30 Hz for gamma. The definitions are not

exact and the boundaries of each band vary between
authors.

• Evoked potential: the average brain response to a re-
peated stimulus, e.g., a pure tone played 100 times.
Averaging across the individual presentations (trials)
removes background noise, identifying the common/
repeatable component.

• Source localization: applying mathematical transforma-
tions that estimate which brain regions likely gave rise to
the electrical activity recorded at the scalp. This “inverse
problem” has infinite solutions, and many algorithms
havebeenproposed tonarrowthis toa singlebest answer.

• Cordance: a measure combining multiple mathemati-
cal transformsofEEGpoweracross electrodes, often in
the prefrontal cortex. Theorized to measure activity
related to cerebral perfusion.

Am J Psychiatry 176:1, January 2019 ajp.psychiatryonline.org 45

WIDGE ET AL.

http://ajp.psychiatryonline.org


We searched PubMed for articles related to EEG, major
depression, and response prediction (see the online supple-
ment). We considered articles published in any indexed year.
From these, we kept all that reported prediction of treatment
response, to any treatment, in any type of depressive illness,
using any EEGmetric. Our prospective hypothesis was that EEG
cannot reliably predict treatment response. We chose broad
inclusion criteria to maximize the chance of a signal detection
that falsified our hypothesis. That is, we sought to determine
whether there is sufficient evidence to recommend the routine
use of anyQEEG approach to inform psychiatric treatment. This
is an important clinical question, given the commercial avail-
ability and promotion of psychiatric QEEG. We did not include
studies that attempted to directly select patients’ medication
based on an EEG evaluation, an approach sometimes termed
“referencedEEG” (78). ReferencedEEG is not a diagnostic test,
and as such does not permit the same form of meta-analysis.

The meta-analysis of diagnostic markers depends on 232
tables summarizing correct and incorrect responder and non-
responder predictions (79). Two trained raters extracted these
from each article, with discrepancies resolved by discussion and
final arbitration by the first author. Where necessary, table
valueswere imputed fromotherdataprovided in thearticle (see
the online supplement). For articles that examined more than
one marker or treatment (19, 29, 52, 57, 60, 67, 80), we con-
sidered them as separate studies. We reasoned that treatments
with different mechanisms of action (e.g., repetitive transcranial
magnetic stimulation [rTMS] versus medication) may have
different effects on reported biomarkers, even if studied by a
single investigator. For studies that reported more than one
method of analyzing the same biomarker (23, 34, 57), we used
the predictor with the highest positive predictive value. This
further increased the sensitivity and the chance of a positive
meta-analytic result. Articles that did not report sufficient
information to reconstruct a 232 table (14, 15, 17, 21, 25, 28, 32,
33, 42, 43, 81–92) were included in descriptive and study qual-
ity reporting but not in the main meta-analysis.

For quality reporting, we focused on whether the study
used analytic methods that increase the reliability of con-
clusions. Chief among these is independent sample veri-
fication or cross-validation—reporting the algorithm’s
predictive performance on a sample of patients separate from
those originally used to develop it. Cross-validation has re-
peatedly been highlighted as essential in the development
of a valid biomarker (10, 11, 61, 74, 93). Our two othermarkers
of study quality were total sample size and correction for
multiple hypothesis testing. Small sample sizes falsely inflate
effect sizes (93), and correction for multiple testing is a
foundation of good statistical practice.

We conducted univariate and bivariate meta-analyses
using R’s mada package for analysis and metafor for visual-
izations (94–96). The univariate analysis summarized each
study as the natural logarithm of its diagnostic odds ratio,
using a random-effects estimator (79). Bivariate analysis used
sensitivity and specificity following the approach of Reitsma
et al. (97). From the bivariate analysis, we derived the area

under the summary receiver operator curve and computed an
area-under-the-curve confidence interval by 500 iterations
of bootstrap resampling with replacement. For the univari-
ate analysis, we report I2 as a measure of study heterogeneity.
As secondary analyses, we separated studies by biomarker
type (LDAEP, power features, ATR, cordance, andmultivariate)
and by treatment type (medication, rTMS, or other). These
were then entered as predictor variables in bivariate meta-
regressions. Finally, to assess the influence of publication bias,
we plotted log(diagnostic odds ratio) against its precision, ex-
pressed as both the standard error (funnel plot) and the effec-
tive sample size (98). We tested funnel plot asymmetry with
the arcsine method described in Rücker et al. (99), as imple-
mented in themeta package (100). This test has been suggested
to be robust in the presence of heterogeneity and is the rec-
ommended choice of a recent working group (101). All of the
above were preplanned analyses. Our analysis and reporting
conform with the PRISMA guidelines (102); the checklist is
included in the online supplement. The supplement also reports
an alternative approach using standardized mean differences.

RESULTS

Descriptive Study Characteristics
Our initial search produced 995 articles, to which we added
28 articles from other sources (see Figure S1 in the online
supplement). Ninety of these appeared to discuss response
prediction, and 76 articles, covering 81 biomarkers, were
eligible for descriptive analysis. Of these, 53 articles, dis-
cussing 57 biomarkers, included sufficient information for
meta-analysis. The majority of articles that did not include
sufficient 232 table information still reported a statistically
significant result (22/24, 91.7%).

Studies varied in the degree of treatment resistance, in-
cluded and excludeddiagnoses, details ofEEGrecording, and
analytic and statistical approach (see Table S1 in the online
supplement). Seventy percent (57/81) were studies of re-
sponse tomedication, with most of the remaining (17%, 14/81)
predicting response to rTMS. Citalopram/escitalopram and
venlafaxine were the most commonly studied medications,
representing 23% (13/57) and 19% (11/57) of medication
studies, respectively. Most reported markers were from
resting-state EEG (70%, 57/81) and did not source-localize
the EEG data (79%, 64/81). The most heavily represented
biomarkers were low-frequency EEG power (31%, 25/81)
and cordance (19%, 15/81).

No study was a preplanned independent-sample repli-
cation of a previous investigation with identical medication
regimens and outcome measures. A few markers, however,
were studied repeatedly with similar designs. Three LDAEP
studies attempted to predict response to citalopram (19, 21,
103). They had inconsistent results that appeared to be de-
pendent on source-localization technique. Olbrich et al. (67)
used a vigilance marker that had previously been validated
(using different recording/analysis methods) in smaller data
sets. Cook et al. used cordance to predict the response to
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FIGURE 1. Results of a Meta-Analysis of Quantitative EEG (QEEG) Biomarkers in Depression Treatment: Sensitivitya
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a The figure shows results, presented as forest plots, for sensitivity for prediction of clinical antidepressant response based on QEEG biomarkers. Meta-
analytic estimates show modest predictive power for clinical response. (For more information about the studies listed, see Tables S1 and S2 in the
online supplement.) Markers are indicated as follows: TMS=transcranial magnetic stimulation; Vfx=venlafaxine; ATR=Antidepressant Treatment
Response index; Theta=thetapower;Rbx=reboxetine; ACC=anterior cingulate cortex;OFC=orbitofrontal cortex;Bup=bupropion; Esc=Escitalopram;
Clo=clomipramine; Map=maprotiline.
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FIGURE 2. Results of a Meta-Analysis of Quantitative EEG (QEEG) Biomarkers in Depression Treatment: Specificitya
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a The figure shows results, presented as forest plots, for specificity for prediction of clinical antidepressant response based on QEEG biomarkers. Meta-
analytic estimates show modest predictive power for clinical response. (For more information about the studies listed, see Tables S1 and S2 in the
online supplement.) Markers are indicated as follows: TMS=transcranial magnetic stimulation; Vfx=venlafaxine; ATR=Antidepressant Treatment
Response index; Theta=thetapower;Rbx=reboxetine; ACC=anterior cingulate cortex;OFC=orbitofrontal cortex;Bup=bupropion; Esc=Escitalopram;
Clo=clomipramine; Map=maprotiline.
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FIGURE 3. Results of a Meta-Analysis of Quantitative EEG (QEEG) Biomarkers in Depression Treatment: Log(Diagnostic Odds Ratio)a
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a The figure shows results, presented as forest plots, for the log(diagnostic odds ratio) for prediction of clinical antidepressant response based onQEEG
biomarkers. Meta-analytic estimates showmodest predictive power for clinical response. (Formore information about the studies listed, see Tables S1
and S2 in the online supplement.) Markers are indicated as follows: TMS=transcranial magnetic stimulation; Vfx=venlafaxine; ATR=Antidepressant
Treatment Response index; Theta=theta power; Rbx=reboxetine; ACC=anterior cingulate cortex; OFC=orbitofrontal cortex; Bup=bupropion; Esc=
Escitalopram; Clo=clomipramine; Map=maprotiline.
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varying medication protocols, but a series of their studies (26,
54, 55) found better-than-chance prediction using the same
equipment, outcome measures, and decision rule (cordance
decrease at 1 week of treatment). Bares et al. used different
patient populations (bipolar depression and major depressive
disorder), treatments, and response definitions but also re-
peatedly reported successful response prediction with a
1-week cordance decrease (47, 50, 51). A pair of studieswith a
relatively large sample size found that the ATR predicted
response to different medications (59, 60). These studies
were based on earlier reports of cordance and power bio-
markers by the same researchers using different medication
regimens (104). The larger ATR studies reported a slight
modification of a previously unpublished version of ATR
(version 4.1 in the study reports, compared with version 4.0 in
the trial protocol and previous poster presentations). Widge
et al. (61) reported that the same version of ATR did not
predict response to rTMS. Reports from the iSPOT-D study
were hypothesis driven and meant to test biomarkers that
had previously been reported, although they used a different
medication protocol (25, 40, 69). Finally, theta power source-
localized to the anterior cingulate cortex was reported by
multiple laboratories as a predictor of response to different
monoaminergicmedications (14, 29, 31). A recent report from
the EMBARC study (105) (which did not report information

necessary for meta-analysis) also found cingulate theta to
predict antidepressant response, although theta changes did
not differ between patients receiving sertraline and those
receiving placebo.

Study Quality
Study sizes were generally small, with a median N of 25. The
distribution was trimodal (see Figure S2 in the online sup-
plement), with peaks at approximately N=20, N=85, and
N=660. The latter reflects reports from the recently con-
cluded iSPOT-D study (40, 67, 69).

Most studies did not meet the quality metrics. Forty
studies reported testing only a single EEG feature or finding
no significant results and thus did not require correction for
multiple comparisons. Of the 36 studies that tested multiple
features, 67% (24/36) did not report use of a statistical cor-
rection. Of 71 markers reported to have significant predictive
validity, only six (8%) were studied with cross-validation or
another out-of-sample verification. Three of thesewere from
the same first author (106–108). One article reported using
cross-validation but did not include cross-validated algo-
rithm performance in its main text or abstract (60).

Overall Efficacy
For all biomarkers taken together, the meta-analysis sug-
gested predictive power above chance (Figures 1–4). The
meta-analytic estimate of sensitivity was 0.72 (95% CI=
0.67–0.76), specificity was 0.68 (95% CI=0.63–0.73), and
log(diagnostic odds ratio) was 1.89 (95% CI=1.56–2.21). These
correspond to an area under the curve of 0.76 (95% CI=
0.71–0.80). The univariate analysis did not suggest study
heterogeneity as a driver of results (I2=0%; Q=55.9, p=0.48).
This implies that, in general, QEEG may have predictive
power for treatment response in depressive illness. No bio-
marker or treatment type showed significantly greater pre-
dictive power than another. In bivariate meta-regressions
(see Tables S3 and S4 in the online supplement), the Akaike
information criterion increased from its omnibus value of
2115.7 to 2104.1 for a model split by biomarker type and to
2107.7 for a model split by treatment type. Increases in
Akaike information criterion imply that model terms have
no true explanatory power (109). This is further supported
by most meta-regression model coefficients failing to reach
significance. We considered the possibility that these results
reflect older studies identifying incorrect candidates, with
newer studies homing in on true effects. A bivariate meta-
regression of diagnostic accuracy against publication year
showed no effect (p.0.27, Z-test on regression coefficients).

Funnel-plot analysis suggested that QEEG’s apparent pre-
dictive power is driven by small studies with strong posi-
tive results. The plot was specifically depleted in studies with
smaller effect sizes that may not have reached prespecified
significance thresholds (Figure 5A), and there was a tight
correlation between effect size and the reciprocal of effective
sample size (Figure 5B). The arcsine test for funnel plot
asymmetry rejected the null hypothesis (t=6.33, p=4.6431028).

FIGURE 4. Results of a Meta-Analysis of Quantitative EEG (QEEG)
Biomarkers in Depression Treatment: Summary Receiver
Operator Curvea
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a The figure shows results for the summary receiver operator curve for
sensitivity of prediction of clinical antidepressant response based on
QEEG biomarkers. The modest predictive power for clinical response
shown in Figures 1–3 is also visible in the summary receiver operator
curve, where the area under the curve is estimated at 0.76. rTMS=
repetitive transcranial magnetic stimulation.
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DISCUSSION

QEEG is commercially promoted to psychiatrists and our
patients as a “brain map” for customizing patients’ depression
treatment. Our findings indicate that QEEG, as studied and
published to date, is not well supported as a predictive bio-
marker for treatment response in depression. Use of com-
mercial or research-grade QEEGmethods in routine clinical
practice would not be a wise use of health care dollars. This
conclusion is likely not surprising to experts in QEEG, who
are familiar with the limitations of this literature. It is im-
portant, however, for practicing psychiatrists to understand the
limitations, given the availability of QEEG as a diagnostic test. At
present, marketed approaches do not represent evidence-based
care. This mirrors other biomarker fields, such as pharma-
cogenomics and neuroimaging, for which recent reviews
(4, 110) suggest that industry claims substantially exceed the
evidence base. Like those markers, QEEG may become clin-
ically useful, but only with further and more rigorous study.

We showed that the QEEG literature generally describes
tests with reasonable predictive power for antidepres-
sant response (sensitivity, 0.72; specificity, 0.68). This ap-
parent utility, however, may be an artifact of study design
and selective publication. We observed a strong funnel plot
asymmetry, indicating thatmanynegative orweak studies are
not in the published literature. Of those that were published,
many have small sample sizes. Small samples inflate effect
sizes, whichmay give a false impression of efficacy (111). This
is doubly true given the wide range of options available
to EEG data analysts, which can lead to inadvertent multi-
ple hypothesis testing (93). We also identified a common
methodological deficit in the lack of cross-validation, which
could overestimate predictive capabilities. Taken together,

the findings suggest that community standards in this area of
psychiatric research do not yet enforce robust and rigorous
practices, despite recent calls for improvement (11, 77, 93).
Our results indicate that QEEG is not ready for widespread
use. Cordance and cingulate theta power are closest to proof
of concept, with studies reporting successful treatment
prediction across different medication classes and study
designs (14, 29, 31, 47–49, 51, 105). ATR has been successful
across medication classes, but only when tested by its origi-
nal developers (58, 59). A direct and identical replication of
at least some of those findings is still necessary. These de-
sign and reporting limitations suggest that QEEG has not
yet been studied or validated to a level that would make it
reliable for regular clinical use.

We designed this meta-analysis for maximum sensitivity,
becausewe sought to demonstrateQEEG’s lackofmaturity as
a biomarker. This makes our omnibus meta-analytic results
overly optimistic and obscures three further limitations of
QEEG as a response predictor. First, we accepted each in-
dividual study’s definition of the relevant marker without
enforcing consistent definitions within or between studies.
For example, alpha EEG has been defined differently for
different sets of sensors within the same patient (34) and
at different measurement time points (60). Enforcing con-
sistent definitions would attenuate the predictive signal,
because it reduces “researcher degrees of freedom” (77). On
the other hand, an important limitation of our meta-analysis
is that it could not identify a narrow biomarker. If QEEG can
predict response to a single specific treatment or response in a
biologically well-defined subpopulation, that finding would
be obscured by our omnibus treatment. Marker-specific
meta-analysis (as in reference 76) would be necessary to
answer that question.

FIGURE 5. Influence of Publication Bias in Results of a Meta-Analysis of Quantitative EEG (QEEG) Biomarkers in Depression Treatmenta
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a Panel A is the funnel plot of study effect size (log of diagnostic odds ratio [DOR]) against the standard error of that effect size. Dashed lines represent the
meta-analytic estimate and its 95% confidence interval. Small studies with effect sizes between 0 (no effect) and approximately 2 (modest effect) are
underrepresented. Panel B is a scatterplot of effect size (log of diagnostic odds ratio) against the reciprocal of effective sample size, showing that the
two are linearly related. The overlaid line is a robust linear regression fit. The association of effect size with study size holds across biomarker types,
reflected here by different marker shapes. rTMS=repetitive transcranial magnetic stimulation.
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Second, we did not consider studies as negative if they
found significant change in the “wrong” direction. For in-
stance, theta cordance decline during the first week of
treatment is believed to predict medication response (26, 47,
48, 51, 52, 55). Two studies reported instead that a cordance
increase predicted treatment response (46, 53). LDAEP
studies have reported responders to have both higher (17,
19, 20) and lower (15) loudness dependence compared with
nonresponders. This could be explained by differences in
collection technique, or in the biological basis of the inter-
ventions (e.g., the inconsistent study used noradrenergic
medication, whereas LDAEP is thought to assess seroto-
nergic tone). It could also be explained by true effect sizes of
zero, and modeling these discrepancies differently would
reduce our estimates of QEEG’s efficacy.

Third, and arguably most important, depression itself is
heterogeneous (6, 112). Defining and subtyping it is one of the
major challenges of modern psychiatry, and there have been
many proposals for possible endophenotypes (6, 9, 12, 113,
114). When we consider that each primary study effectively
lumped together many different neurobiological entities, the
rationale for QEEG-based prediction is less clear. As an ex-
ample, a recent attempt to validate an obsessive-compulsive
disorder biomarker, using the originating group’s own soft-
ware, showed a significant signal in the opposite direction
from the original study (115). Furthermore, studies often
predict antidepressant response for patients receiving med-
ications with diverse mechanisms of action. Considering that
patients who do not respond to one medication class (e.g.,
serotonergic) often respond to another (e.g., noradrenergic
ormultireceptor), it does notmake sense for any single EEG
measure to predict response to multiple drug types. Simi-
larly, although the goal of many recent studies is to explicitly
selectmedication on the basis of a single EEG recording (40,
70, 72, 78), this may not be possible given the many ways
in which neurotransmitter biology could affect the EEG.
Reliable electrophysiologic biomarkers may require “pu-
rification” of patient samples to those with identifiable
circuit or objective behavioral deficits (6, 116) or use of
medications with simple receptor profiles. It may also be
helpful to shift from resting-state markers to activity
recorded during standardized tasks (6) as a way of increasing
the signal from a target cortical region. Task-related EEG
activity has good test-retest reliability, potentially improving its
utility as a biomarker (71).

We stress that our meta-analysis means that QEEG as
currently known is not ready for routine clinical use. It does
not mean QEEG research should be stopped or slowed.
Many popular QEEG markers have meaningful biological
rationales. LDAEP is strongly linked to serotonergic function
in animals andhumans (117). Cordancewasoriginally derived
from hemodynamic measures (11, 54). Neither cordance nor
ATR changed substantially in placebo responders, even
though both changed in medication responders (26, 59, 117).
The theta and alpha oscillations emphasized in modern
QEEGmarkers are strongly linked to cognition and executive

function (62, 118). Our results do not imply that QEEG
findings are not real; they call into question the robustness
and reliability of links between symptom checklists and
specific aspects of resting-state brain activity. If future stud-
ies can be conducted with an emphasis on rigorous methods
and reporting, and with specific attempts to replicate prior
results, QEEG still has much potential.
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